

Spring return flange designed to prevent the loosening of the bolts under any weather conditions. Extremely light and durable, thanks to the cast iron coated fiberglass-reinforced polypropylene (PP-GF30). It can be used on tap water piping systems.

Features

Materials

- Internal core in ductile cast iron EN-GJS-500-7.
- External coating made of 30% glass reinforced polypropylene (PP-GF30).

Certifications

ANSI B16.5 class 150

Applications

Standards

Dimensional

Cod	DE (mm)	DN (inch)	Opera⊠ng Pressure (bar)	ØE (mm)	ØF (mm)	ØI (mm)	ØB (mm)	S (mm)	N bolts	Bolts	R (mm)	Preload min (Nm)	Preload max (Nm)	Weight (kg)
1760063050	63	2″	16	164	121	78	18	19	4	M16	1	30	40	0.74
1760090080	90	3″	16	195	152	108	18	19	4	M16	1	40	50	1.00
1760110100	110	4″	16	238	191	128	18	23	8	M16	2	40	60	1.84
1756125100	125	5″	16	226	180	134	18	23	8	M16	2	40	60	1.40
1760160150	160	6″	16	296	241	178	22	29	8	M20	1	60	80	3.00
1760180150	180	6″	16	296	241	186	22	29	8	M20	2	60	80	2.78
1756200200	200	8″	16	346	295	238	22	29	8	M20	1	80	100	3.40
1760225200	225	8″	16	355	298	238	22	33	8	M20	1	80	100	4.66
1760250250	250	10″	16	429	362	288	26	36	12	M20	1	90	120	6.46
1760315300	315	12"	16	497	432	338	26	49	12	M20	2	100	150	11.38

• "C" shaped section with anti-loosening spring effect.

Designed to withstand 4 times the recommended bolt preload.

Weight reduced by 70% compared to normal steel flanges.

High corrosion resistance thanks to the high thickness of the coating (min3mm).
Dimensions according to B16.47 class 150

Connection holes according to ANSI ASME B16.5 class 150

MAIN TECHNICAL SPECIFICATIONS

The main characteristics of the flange are determined by the same factors: profile design and materials used.

By combining these factors and a safety factor of 4 (unquestionable essential criteria in Macplast's view), we were able to provide the flange with several features that are closely dependent on each other: Load distribution

The profile section has been throughly studied to enhance load distribution from the bolt to the head of the stub flange, reducing the stress level of the flange and eliminating any critical points.

Compared to the regular "flat" flanges, the profiled flanges reach in fact much lower stress levels at equal preload, allowing you to work on the profile and "polish" the material as necessary, while still ensuring the spring effect that allows keeping the bolts locked and reducing the weight of the flange itself significantly. Spring effect

By spring-effect we refer to the elastic deformation of the material that allows it to return to its initial shape once the loads are removed. The profile is designed to ensure an anti-loosening effect that allows the flange to keep the bolts tightened even in case of wide temperature variations. The safety factor applied in design phase indicates that plastic deformation begins, or the material reaches its yield point, at a tightening torque 4 times higher than the recommended one.

Reduced weight

The flange is capable of withstanding high tightening torques compared to its size and therefore we were able to lighten the flange by 70% in comparison with traditional steel flanges, while still ensuring complete safety.

Connection holes according to ANSI ASME B16.5 Class 150.

MATERIALS

Connecting

Internal core

Ductile cast iron GJS 500-7 as per UNI EN 1563; ensures greater resistance to corrosion in comparison with regular steel S235JR (FE360B), offering the same mechanical properties.

Outer coating

Hot molded glass fiber reinforced polypropylene (PP-GF 30), minimum thickness 3mm; it ensures high degree of protection against corrosion and gives the flange a more finished appearance.

TECHNICALS SPECIFICATIONS

Dimensions according to B16.47 class 150; Connection holes ANSI ASME B16.5 class 150; Field of application WATER SYSTEMS; Possibility to customize the marking;

Made in compliance with ISO 9001 quality management system and 14001 environmental management system.

ASSEMBLY INSTRUCTIONS

Elastic deformation

CLIMATE	TEMPERATURE	PRELOAD		
Polar	-50°C ÷ -5°C	minimum		
Temperate	-5°C ÷ 30°C	nominal		
Desert	30°C ÷ 60°C	maximum		

Tightening depending on

temperature

Tightening procedure - step

- 1 -> manual tightening of the nuts
- 2 -> tighten to 20% of recommended torque
- 3 -> tighten to 40% of recommended torque
- 4 -> tighten to 60% of recommended torque 5 -> tighten to 80% of recommended torque

6 -> tighten to 100% of recommended torque

- 7 -> repeat to 100% of recommended torque
- 8 -> repeat to 100% of recommended torque
- 9 -> repeat to 100% of recommended torque

dicol.com.co